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ABSTRACT

Texture segmentation is one of the most important topic for Image analysis, understanding and interpretation. It
is actually a topic where a lot of different approaches lead to more or less satisfying results. In general all of
them try to match a particular feature or a feature vector which describes the analyzed region. Subsequently a
threshold or threshold vector is applied and a texture class is assigned to the region. This paper describes how
data mining algorithms can be used advantageously for texture based segmentation. Using a reference image with
known texture, a model for a classifier is trained, that is applied to image regions of unknown texture. For the
data mining it is necessary to calculate many different features and rate them (e.g by their information gain or
correlation) accordingly. Only the best features selected this way are used to train a classifier, which is then used
to segment subsequent images. Using this selected classifier it is possible to determine the location where a
specific texture occurs in the image. The performance of the classifier is demonstrated for synthetic test images.

Keywords Texture segmentation, Texture, Image Processing, Image texture Analysis, Texture classification

I. INTRODUCTION

When solving problems in the area of texture
based segmentation, the general way is to find a
criterion which best describes the texture, calculate a
figure of merit, and apply a threshold on it. Values
above the selected threshold indicate the sought
texture. Various authors [1]-5] attempt to find
meaningful criteria to selectively describe a particular
texture. These features can get quite complex and in
many cases it would also be possible to detect the
texture by a combination of simple texture descriptors.
However, the selection of the optimal descriptor is not
always straight forward.

This work was motivated by an industrial project
where scratches on coils lateral areas are to be
detected. Since furthermore regions with other defect
types vyielding different textures should also be
detected, a data mining approach seems to be
reasonable since it can be used to select the optimal
texture descriptors (also called features or attributes).
In other words, image processing meets data mining.

This paper is structured as follows: In the next
section the feature extraction of the image is discussed
to provide the input data set for the data mining
process. Subsequently the work3ow of the data mining
process is described in Sec. Ill. This work3ow is tested
on synthetic images and further on real images of coils

with scratches where the performance of the work3ow
is discussed (Sec. IV). Finally future improvements are
suggested and an outlook is given.

A. Formalization of the problem

Let Q CA be the domain of an image and
{Qq}i=1 ..N be a partition of € into N (unknown)
regions1. We assume that the pixels contained in the
region €4 are a Gauss-Markov process2. An other
words, there  exist  (unknown)  parameters
A€ R"XHC,-E R™M>"

Qe A" Rye R™*™, white, zero-mean Gaussian

covariance matrices

processes { V(D } e R { wi(h}e R™ and a process

{x(D}e R" such that the pixels at each region
QSUB1 at each instant off time are given by

X(t+ 1) =Ax () +NQ v(D: x(f) = x; 0 (1)
Yi(ty= Cix (t) +NR; w; (D

Given this generative model, one way to
formalize the problem of segmenting a sequence of
images is the following : Given a sequence of images

{y(he R" t=1,...T7) with two or more distinct
regions Q, /=1,...N>2 that satisfy the model (1),

estimate both the regions €2; and the model parameters
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of each region, namely the matrices A; C; the initial

state x0 and the covariance of the driving process
Q:

B. Relation to prior work

The model for the spatio-temporal statistics of
one region that we proposed in the previous section
was first used in [5]. Similar statistical models were
also used by others [21, 6, 24, 9]. For synthesis of
spatio-temporal textures, statistical generative models
can be replaced by procedural techniques such as [19,
25].

The analytical tools we use to infer the model
parameters are borrowed from the literature of
subspace system identification[15], and the discrepancy
measure n] between different Models is inspired
by[3].Since textures can be considered as a degenerate
case of dynamic textures, our work relates to texture
segmentation.

The proposed algorithm partition the image
domain of a video sequence into regions with constant
spatio-temporal statistics.

Il. DYNAMIC TEXTURE LEARNING AND
COMPARISON
If the regions €2;/=1,...N were known, one
would just be left with two problems: one is the learning
of the model parameters, which we review in Sect. 2.1,
the other is the computation of a discrepancy measure

between different dynamic textures, which we discuss
in Sect. 2.2.

A. Leaming

It is well known [10] that a positive-definite
covariance  sequence  with  rational  spectrum
corresponds to an equiva-lence class of second-order
stationary processes. It is then possible to choose as
a representative of each class a Gauss-Markov model
with the given covariance. In other words, for a given
region €, we can assume that there exist a positive

integer n, a process { x (f) } with realizations in R’ (the
‘state”) with initial condition x (f))), some matrices A;
and C; and a symmetric positive semi-definite matrix

i_QT’ Si-IZO, where S;=E[w(f) vT(t)], such
LS,' H,J
that {y(f} is the output of model (1). Since we
assume that the noise affecting the state v(#) and the
noise affecting the output w(f) are independent, we

have that S;=0.

The choice of matrices A; C; Q; R;is not unique,
in the sense that there are infinitely many models that
give rise to exactly the same measurement covariance
sequence start-ing from suitable initial conditions®. In
other words, any given process has not a unique
model, but an equivalence class of models. In order to
identify a unique model of the type (1) from a sample
path y(f), we choose a representative of each
equivalence class as suggested in [5], i.e. we will make
the following assumptions :m;> n and rank (C) = nand
choose a model realization that makes the columns of
C; orthonormal, i.e C,-T Ci= I, This guarantees that the
model corresponding to a given dataset is uniquely
determined. This model corresponds to a canonical
realization [7].

The problem of going from data to models can
be formulated as follows: given measurements of a
sample path of the process: y(1)...y(T): T>>n,
estimate A; C; Q, a canonical model relization of the

process { y (9 }. Ideally, we would want the maximum
likelihood solution from the finite sample, this is

A; Gy Q; x; 0] (2)

=argmaxlogp(y(1) ...y (N 1 A; G, Q;.. x;0)

Q%0

Notice that, as we said in Section 1.1, we do not
model the covariance of the measurement noise R,

since that carries no information on the underlying
process. The asymptotically efficient solution for the
estimation problem (2), as T— e, can be found in
[23], while accurate description of its implementation,
named N4SID, can be found in [15]. In practice, for
computational efficiency, we settle for the suboptimal
solution described in [5].
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B. Discrepancy between dynamic textures
Assuming that the parameters A; C; Q; x; o have

been inferred for each region, in order to set the stage
for a segmentation procedure, one has to define a
discrepancy mea-sure among regions. The difficulty in
doing so is that each region is described not only by
the parameters above, but by an equivalence class of
such parameters, obtained by changes of basis of the
state-space { x(f)} in model (1). Therefore, a suitable
discrepancy measure has to compare not the
parameters directly, but their equivalence classes.

One technique for doing so has been recently
proposed in [3]. It consists of building infinite
observability matrices, whose columns span the vector
space generated by the measurements y(f) of the
model (1), and that represent the high-dimensional
subspace of the infinite-dimensional space of all
possible measurements. Then one can compute the
geo-metric angles between such subspaces through
their embed-ding.

More formally, let Ae R"*P and Be R"* 9 be
two matrices with full column rank, and suppose that
p=q. The g principal angles 6, < 0, z between range

(A) and range (B) are recursively defined for
k=1,2,...q as

6 x AT 3)
C0S 0y =MmaxX — -5
ve IR 1BY,

ye Rp
X AT B,
= 11Ax41I; 1Byl

0 IxTAz‘upTBJJ
COS 0= Mmax ————mr-
e RpIIAXIIQ 1Bl

ye2p

xf AT B,

=T, By, O k=24

subject to X,TATAX:O and y,-TBTBy: 0.

for i=1,2 ... k—1
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subject to X,’T AT Ax=0 and y,T BTBy:O, for
i=1,2,...k—1

Now, let M, and M, be two models of the type

(1), with the same output dimensionality, which are
characterized in state space terms by their system
matrices A; and A, and output matrix C; and C,

respectively. Their infinite observability matrices O; for
i=1,2, are defined as

o=[clATc..AD"cl..17Te R (4

and the principal angles between the ranges of
0, and O, are referred to as subspace angles. Their

computation can be carried out in closed form, and
entails the computation of the eigen values of the
solution of a discrete-time Lyapunov equation [3].

While more than one distance for single-input
single-output (SISO) linear dynamical systems have
been defined based on subspace angles [3, 12], the
extension to the multiple-input multiple-output (MIMO)
case is not trivial given the lack of the concept of the
inverse of a MIMO system. However, it has been
shown in [18] that subspace angles between infinite
observability matrices have very high discriminative
power under the hypothesis of stabilty and
observability of the compared systems. With this in
mind, we measure the discrepancy between different
spatio-temporal statistics associated to different models
by com-paring either the set of subspace angles or
their combination via Martin’s distance [3] defined as

" (5)
d2 M(M1 : M2)=/nHT
k=108~ Q

lll. DYNAMIC TEXTURE SEGMENTATION

In Sect. 2.1 we have seen that, if the boundaries
of each region were known, one could easily estimate
a simple model of the spatio-temporal statistics within
each region. Unfortunately, in general one does not
know the boundaries, which are instead part of the
inference process. If the dynamic texture associated
with each pixel were known, then one could easily
determine the regions by thresholding or by other
grouping or segmentation techniques. However, a
dynamic texture associated with a certain pixel &, as
defined in equation (1), depends on the whole region
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€, containing the pixel & Therefore, we have a classic

“chicken-and-egg” problem: If we knew the regions, we
could easily identify the dynamical models and if we
knew the dynamical models we could easily segment
the regions. Unfortunately, we know neither.

Rather than seeking for an estimate of the
regions and the model parameters in one shot, we can
instead adopt a two-stage algorithm to circumvent the
model complexity issue: We first associate a local
signature to each pixel, by integrating visual information
on a fixed spatial neighborhood of that pixel; then we
group together pixels with similar signatures in a
region-based segmentation approach. The signatures
are computed from the subspace angles relative to a
reference model, following the ideas outlined in
previous sections. We describe this simple and yet
effective approach in the following subsections.

A. A geometric approach

We start by considering the neighborhoods
B (&) CQ around each pixel § € Q. We then associate
to each pixel location & the dynamics of the
spatio-temporal  region by computing (§) from
AE),CE)=N4SIDyE, HEB(E), t=1,...T.  For
each pixel & we generate a local spatio-temporal
signature given by the cosines of the sub-space angles
{ej (§) } between O (&) and a reference model,

O0(&y:
(&) =(cos B (€) ...cos 6, (&) (6)

We call this approach “geometric’ since the
signatures are constructed using subspace angles,
rather than responses of banks of filter as is more
common in static texture segmentation.

With the above representation, the problem of
dynamic texture segmentation can be formulated as
one of grouping regions of similar spatio-temporal
signatures. We propose to perform this grouping by
reverting to the Mumford-Shah functional [13]. A
segmentation of the image plane Q into a set of

pairwise disjoint regions £€2; of constant signature
s;e R’ is obtained by minimizing the cost functional

ECsh=Y, | @-s’dsitviy, ()
i Q

!

simultaneously ~ with respect to the region
descriptors { s;} modeling the average signature of

each region and with respect to the boundary A
separating these regions (an appropriate representation
of which will be introduced in the next section). The
first term in the functional (7) aims at maximizing the
homogeneity with respect to the signatures in each
region Q; whereas the second term aims at minimizing

the length IT'l of the separating boundary.

B. A level set formulation

In the following, we will restrict the class of
possible solutions of the proposed variational problem
to two-phase solutions, i.e. solutions in which each
pixel is associated with one of two dynamic texture
models. All results do, however, extend to the case of
multiple phases. For the implementation of the
boundary A in the functional (7) we revert to the implicit
level set based representation proposed by Chan,
Sandberg and Vese [2, 22].

Compared to explicit contour representations, the
level set based representations [14] have several
favorable prop-erties. Firstly, they do not restrict the
topology of the evolv-ing boundary, thereby facilitating
spliting and merging dur-ing the evolution. And
secondly, one does not need to take care of a
regridding of control or marker points.

Let the boundary T in (7) be given by the zero
level set of a function ¢:Q — R:

r={feQl¢ =} (8)

With the Heaviside function

_[1 ife=0 ©)
H(q))‘{o if¢<0}

the functional (7) can be replaced by a functional
on the level set function o:

E@{sh= | (s@®-s)?Ho)dt
Q

v | s@®-21-H® dE

Q

+p[I] (10)
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Fig. 1. Example of a composition of dynamic
textures: fire on ocean waves. The time evolution of
the sequence is rendered by overlapping a few
snap-shots corresponding to different image frames.

IV. FEATURE EXTRACTION

In image processing, usually presegmented
objects are classified by a previously trained classifier.
E.g. damaged goods are recognized by a classifier on
the production line, where the features are calculated
for the whole presegmented object. Since in this paper
texture based segmentation will be investigated, the
number of elements to classify is equal to the number
of the pixels N, in the image, which is much larger

than the number of the presegmented objects N,

A.  Subsampling the input data

To detect pixels representing textures
algorithmically the memory requirement is NprSﬁ

where Ny is the number of the features and Sy is the

memory needed for each feature. To save memory,
only a subset of pixels is selected out of the image.

Since the texture doesn’t change very abruptly in
the spatial domain and usually is distributed over a
bigger region of the image, selecting only a few percent
of all pixels Nj, is sufficient enough to train the classifier

properly. Further, when the neighborhood size sgy is

large enough, two adjacent pixels will have similar
features.

__ slxsly 0 (1)
Al ™ NHx sNHy

with

slx image size in x - direction

SNHx neighborhood size in x - direction
sly image size y - direction

SNHy neighborhood size in y - direction
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o spatial overlap of distinct neighborhoods

Depending on the parameter sgy used for the
feature calculation a reasonable number of pixels
analyzed is:10000 is choosen. Depending on the
problem andthe requirements on memory and time
complexity, these parameters can be adapted.

N I | —image
|- pixel

5_.“*— 4 —neighbourhood
/

A
F 4 J;l o P
A = [ /-’ g cq,q
B s

[ <
¥

]
.

|
class
BEEE "
Fig. 2. only a subset of all pixels are selected
from the image for the data mining process
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In fig. 2 the image is sub sampled and a feature
vector is calculated for each selected pixel and its
neighbourhood.The selected pixels are called instance,
because their spatial position is not used for data
mining process.

B. Feature calculation

For each instance its feature vector is calculated.
This feature vector consists of various features

For a 1000 x 1000 pixel image with a typical
Syy= (15; 15) an overlap of 2.25 is achieved, when
Ny =

Which potentially might be able to separate the
Specific texture? In general these features require a
local neighborhood to describe the texture and can be
divided into

(@) Scalar features (e.g. variance, skewness,
uniformity, entropy, local image contrast, . . . ) in

the form of /(x; y) =f(/(X; ¥); SN SNHy;::);

(b) and matrix features (e. g. FFT, co—occurrence
matrix, structure tensors, . . . ).
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Mf(X’ yuv)= f(/(X’ ,V), SNHx sNHy )
which must be mapped into a scalar feature

Lt ) =Ff(Me(x, y,u,v)..) by calculating
energy, constrast, etc. from the matrix feature. (u, v)

are additional indices of the matrix features, depending
on the neighborhood size.

For example when calculating the energy with in
the low spatial frequency bands, the local matrix feature
is given by

Mf‘l (X1 y) U, V) = FFT{ I(X, y)’ SNHX’ sNHy} (2)

and the associated scalar feature the energy with
the low frequencies becomes:

)=y, vy o M (% ¥, 0, v 8)

o | NH 52

Feature

o | NH s

200400 4000 G000 B0 1000
Instance i

Fig. 3 Features are calculated for selected pixels
(instances) of the trainings data set (see Fig. 5) and
sorted by the class value and the first feature.

In Fig. 3 the feature values of 10000 instances,
sorted by the class, are shown. The index of the
instance is plotted on the abscissa. The ordinate
encodes the different features calculated for each
instance in color. The class feature (at the bottom of
the image) has to be generated interactively by the
user for real images of the coil (see Fig. 8(b)). On the
right side there are 3000 instances indicating the
texture of interest (class 1). The first 7000 instances
do not belong to the sought texture. Since the
instances are additionally sorted along the abscissa by
a second feature, in this case the grayscale value, it
is obvious that some of the features are very similar.

All features are normalized to the range 0 (blue)
to 1 (red) to make them comparable. Since a varying

size of the neighborhood, might accent specific textures
unequal, all features are calculated for varying
neighborhood sizes 5, 11, 15 (upper, middle and lower
third blocks in the image).

When analyzing Fig. 3 to select features for the
classifier, a human might discard e.g. feature number
7 because it has only less dependency on the class.
Feature 4 and 8 might be good candidates to separate
the classes. Regardless of that, the feature selection
for the classifier should be done in the data mining
process automatically, shown in the next section.

V. MACHINE LEARNING AND DATA MINING

Machine learning and data mining [10] are topics
that have a wide application range. Classifying image
and audio data is well understood and widely used (e.
g. [11]-{13], Musical Audio—Mining1).

Basically this process can be split into two main
parts — the training and the test of the classifier.
Therefore a manual classification of the image texture
must be available. It is used to determine the quality
and error rate of the classifier. If the error rate of the
generated classifier is satisfyingly small, the classifier
can be applied to images with unknown texture. For
the implementation of this work the open source java
data mining software Weka [10]2 is used together with
MATLAB?.

1. Training of the classifier. Using the previous
extracted features (Sec. Il) the selection of the best
features is done using Wekas attribute ranking/selector
algorithms (In Weka features are denoted as attributes).
Some popular attribute  selector algorithms are
presented in the following list:

CfsSubsetEval: Evaluates the worth of a subset of
at-tributes by considering the individual predictive ability
of each feature along with the degree of redundancy
between them.

InfoGainAttributeEval: Evaluates the worth of an
at-tribute by measuring the information gain with
respect to the class.

GainRatioAttributeEval: Evaluates the worth of an
at-tribute by measuring the gain ratio with respect to
the class.
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After selecting the attributes for the data mining
process, a classifier must be trained. Weka offers a lot
of different categories of classifiers:

e bayers: Classifiers based on the bayesian
decision theory.

e functions: Classifiers based on regression.

Training and
test image(s)

' :

Manual Select training
classification and test images v
Test image(s)
e
v ¥
Feature ) calculation fo
calculation e the N best
features
Feature ranking
Classifier .| Classifying the
« training with N tesl images
best features i
l Postprocessing
classifyin
! Classifier restm =
Reference b ]
image(s) | | Compare
== || classified with
class image reference
image

Fig. 4. Texture segmentation using data mining
algorithms

e lazy: Classifiers with less computation effort
but generally high memory requirements, like
e.g. nearest neighbors classifiers, which don’t
try to infer a density function in closed form.

e meta: Meta-classifiers combine several
classifiers in different ways like voting,
stacking or boosting, . . .

e trees: Classifiers building up a decision tree
using the selected attributes.

e rules: Classifiers defining rules (similar to the
trees; most rules can be transformed into
trees and vice versa).

Detailed information about the classifiers and their
implementation can be found at Wekas Website* and
in the Weka documentation.

2. Testing of the classifier: When the classifier is
success-fully established, it is tested with a set of test
images. For each pixel or a set of pixels of the image
the selected features are calculated. Using the classifier

51

a prediction of the class can be evaluated. The
performance of the classifier can be determined by
some indices.

The prediction accuracy PA

TP+ TN (4)

PA=
P+N

gives the ratio of the correct predictions and the
prediction error PE

FP+FN (5)
prn 1M

PE=

gives the ratio of the false predictions. The true
TP

positive ratio TPR= 2

gives the prediction accuracy

for the positive.
class and the true negative ratio TNR= TNy
prediction accuracy for the negative class.

P=TP+FN . . .
positive class

total nr. of instances with

N=NP+ TN . .. total nr. of instances with
negative class

TP . . . number of true predicted positive

class

FP . . . number of false predicted positive
class

TN . . . number of true predicted negative
class

FN . . . number of false predicted negative
class

In many cases it is possible to increase of the
prediction accuracy by smoothing the raw prediction
data, hence false predictions of a well trained classifier
are less than true predictions.

VI. EXAMPLES

In this section the previously described workflow
will be discussed based on examples of synthetic
images and real images of a coil metal sheet layer.
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After selecting the attributes for the data mining
process, a classifier must be trained. Weka offers a lot
of different categories of classifiers:

e bayers: Classifiers based on the bayesian
decision theory.

e functions: Classifiers based on regression.

Training and
test image(s)
Manual Select training ‘
classification and test images !
Ad
Feature L calculation fo
calculation — the N best
. features
Feature ranking
Classifier o Classifying the
training with N |— e
best features []
‘ Postprocessing
Classifier dmg
Reference S 7
image(s) Compare
= | | classified with
class image reference
image

Fig. 4. Texture segmentation using data mining
algorithms

e lazy: Classifiers with less computation effort
but generally high memory requirements, like
e.g. nearest neighbors classifiers, which don’t
try to infer a density function in closed form.

e meta: Meta-classifiers combine several
classifiers in different ways like voting,
stacking or boosting, . . .

e trees: Classifiers building up a decision tree
using the selected attributes.

e rules: Classifiers defining rules (similar to the
trees; most rules can be transformed into
trees and vice versa).

Detailed information about the classifiers and their
implementation can be found at Wekas Website* and
in the Weka documentation.

2. Testing of the classifier: When the classifier is
success-fully established, it is tested with a set of test
images. For each pixel or a set of pixels of the image
the selected features are calculated. Using the classifier

51

a prediction of the class can be evaluated. The
performance of the classifier can be determined by
some indices.

The prediction accuracy PA

TP+ TN 4

PA=
P+N

gives the ratio of the correct predictions and the
prediction error PE

FP+FN
P+N

()

PE= 1-PA

gives the ratio of the false predictions. The true
positive ratio TPH:% gives the prediction accuracy

for the positive.
class and the true negative ratio TNR= TNy
prediction accuracy for the negative class.

P=TP+FN . . .
positive class

total nr. of instances with

N=NP+ TN . .. total nr. of instances with
negative class

TP . . . number of true predicted positive

class

FP . . . number of false predicted positive
class

TN . . . number of true predicted negative
class

FN . . . number of false predicted negative
class

In many cases it is possible to increase of the
prediction accuracy by smoothing the raw prediction
data, hence false predictions of a well trained classifier
are less than true predictions.
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A.  Synthetic Images

Using synthetic images provides more options to
vary shape and texture of the test image than real
images. Border conditions are well defined and textures
to detect can be placed properly. Fig. 5 (a) shows an
image with areas of varying textures. The background
changes only slowly with position to simulate an
illumination gradient always seen in real coil images.
Various areas (circles and rhombi), filled with various
textures, are multiplicatively linked to the background.
Figure 5 (b) shows the specific class of texture, that
is to be predicted.

o

Fig. (a) Synthetic image (b) Synthetic class image
Fig. 5 Synthetic image and class to train the
classifier.

The selection of the right features is done by
different  ranking  algorithms(Classi-fierSubsetEval,
InfoGainAttributeEval,  PrincipalComponents,  etc.),
provided by Weka. Figure 6 shows the ranking result
using the Info Gain Attribute Eval algorithm. To select
the right features, attribute selectors can be applied to
the training data set. The feature ranking algorithm is
one possible method, but definitely not the best, since
e.g. the fft2—features of various sizes in Fig. 6 have a
high cross correlation. Discarding strongly correlated
features helps to reduce features to be calculated and
renders the classifier more robust. A good feature
selector that selects only a few but significant features,
avoids an over trained classifier

Which predicts very good results on the training
data set and performs worse on the test data set?

Using the features with the largest ranking score
(e.9. using a threshold of 0.45 for the InfoGain), a
classifier (in this example a tree classifier) is trained.
Combining various attribute selectors may help to
select the most significant features.

graycomatr
enfropy:20
entropv:12
gray:|
graycomatr
gracomatr
oraicomate
entropy:4
graypriate
grad2=>m
mean2; 18
std3
2 =>ff
mad2 =>m
std2: 19
moments %)
mean2:1
std2: 11
moments (
2 = it
fit2=>
mean?:2
Moments
wad2=>m

001 02 03 04 05 06 07
Ranking [nfoGam

Attribut

Fig. 6. Features with low ranking are discarded.

50 100 150 200 30 140 150 200

(a) Synthetic image

(b) Synthetic class image

*® o
@ 4

(c) Synthetic prediction (d) Synthetic smoothed
image image
Fig. 7. Test data (image nr.5) set with class and
prediction

Figure 7 shows a test data set a tree classifier
was applied to. The searched texture is difficult to
detect for a human observation, especially where the
noise is very high. However, a human takes care of
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the a priori knowledge of the texture shape searched
for, which is known to be a rhombus for the test data
set.

The statistics of the classifier, tested on some
other test data sets is shown in Tab I. Although PA is
very large, some test sets have a very low TPR, even
zero percent for test image 7. This indicates that the
classifier covers all test set possibilities. However the
classifier was trained with only two test images (the
first training image is shown in Fig. 5), so the results
are already very good. The subsequent smoothing of
the raw predictions increases the accuracy slightly, but
also some true predictions are removed (e.g. test
image 3 and 4 where PA increases and TPR
decreases). Since the sought texture should represent
a scratch, that is rather small, PA and TPR should be
large.

Table 1. Eerror Statics for the Predictions of
the Synthetic Data Set

raw predictions

Image | TP | TN | FP | FN | PA | PE | TPR| TNR

1843 | 6646 | 354 | 1157 [ 84.89 | 15.11 [ 61.43 | 94.94
2282 | 6725 | 275 | 718 | 90.07 | 9.93 [ 76.07 | 96.07
2608 | 6775 | 225 | 392 | 93.83 [ 6.17 | 86.93 | 96.79
2859 | 6806 | 194 [ 141 | 96.65 | 30.24 [ 0.00 | 99.66
2904 | 6908 | 92 96 |[98.12 | 1.88 [ 96.80 | 98.69

o)l | W

smoothed predictions
mage | 7P | TN | FP | AN | PA | PE | TPR | TNR

1653 | 35776 | 91 [ 2480 | 93.57 | 6.43 | 40.00 [ 99.75
2720 | 36040 [ 251 | 989 |96.90 [ 3.10 | 73.54 | 99.31
1675 | 37749 | 569 7 9856 ] 1.44 | 99.58 | 98.52
2506 | 36765 712 17 19818 | 1.82 | 99.33 | 98.10
0 39159 O 841 19790 2.10 | 0.00 | 100.00
841 | 38716 443 0 9889 1.11 | 100.00 | 98.87

| Nl B~ W

Table 2. Error Statics for the Predictions of the
Coil Data Set

raw predictions
mage | TP | TN | FP | FN | PA | PE | TPR| TNR

27 | 5144 2 1856 | 73.57 | 26.43 | 93.10 | 73.49
25 | 6582 4 418 | 94.00 | 6.00 | 86.21 | 94.03
1
6

28 469 6531 | 7.07 [ 9293 | 6.70
23 | 5076 1924 | 72.54 | 27.46 | 79.31 | 72.51

|l | W
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smoothed predictions

Image | TP N FP | FN | PA| PE | TPR| TNR

3903 | 1385351 | 6262 | 1336 [ 99.45 | 0.55 | 38.32 | 99.90
155 [1146694| 1 146 | 99.99 | 0.01 | 99.36 | 99.99
1797 | 991986 1 1688 | 99.83 | 0.17 [ 99.94 | 99.83
1404 | 581200 | 1007 | 1380 | 99.59 | 0.41 | 58.23 | 99.76

o|lo|s~|w]|:

B.  Real Images

In this section the work3ow is tested on eight
images of the real coils lateral area. The first two
images are used to select the features and train the
classifier. Images 3 to 6 (see Tab. ) are used to test
the classifier and their performance is shown in Tab Il.
A typical image set is shown in Fig. 8. The
classification of the images (Fig. 8(b)) was done
manually, so especially in boundary regions where the
texture is not strongly distinct, the classification might
be erroneous. Errors at the manual classification
reduce the performance of the trained classifier.

Since it is more important to detect scratches on
the metal sheet surface (positive class), the true
positive rate TPR is at least as important than the
prediction accuracy PA.

(a) Coil image

(b) Coil class image

(c) Coil prediction image (d) Coil prediction image
(smoothed)
Fig. 8 Classifying scratches on the coils lateral area
(image nr. 5)

The statistics (Tab. Il) show that for real images
it is more difficult to built an accurate classifier. For the
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problem of scratch detection, the area with a scratch
texture is very small. To detect the scratches (class 1
or positive) accurately the TPR and PA must be large.
Because if there are only less scratches on the coil
(e.g. 1%) even the simplest classifier which always
predicts no scratches (class 0) will still have a large
PA and TNR but TPR will be zero. Consequently the
classifier must be designed to detect the scratches
more accurate than the background. This can be done
be introducing a cost function or using more instances
of the positive class if the sub sampling factor was
large.

Another reason for the moderate performance is,
that the image resolution is very low, so the sought
scratch textures cover only small regions (see Fig.
8(b)). Further only few images were available for the
training and testing of the classifier.

To increase the TPR more representative training
and test images are necessary. Indeed the training and
the test data set is not the only potential improvement,
in some cases simple features will not be sufficient, so
the user still has to think about features which describe
the sought texture best.

VI. CONCLUSION

We propose the usage of data mining algorithms
for texture detection leading to satisfying results. The
only drawback is the increased numerical complexity,
because a large set of features must be calculated first.
Although if the feature space is reduced by the feature
ranking and selection process there still is an
appreciable amount of calculations to be done for the
final feature classification.

The main advantage is that only little a priory
knowledge is necessary about the features that
describe the texture. The feature and threshold
selection is done automatically when the appropriate
classifier is build.

Although a lot of steps must be covered where
different parameters can be optimized. Selecting the
right training and test data set, features and classifier
should not be underestimated. Especially when
selecting the features a pre selection based on physical

properties will be reasonable. But often features
describing a texture by a physical model are not
available, so at this point the loop closes at the
frequent dealt problem: Find an feature that describes
a specific texture best.
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